r - Random forest output interpretation -
r - Random forest output interpretation -
i have run random forest info , got output in form of matrix. rules applied classify?
p.s. want profile of client output, e.g. person new york, works in technology industry, etc.
how can interpret results random forest?
looking @ rules applied each individual tree
assuming utilize randomforest
bundle how access fitted trees in forest.
library(randomforest) data(iris) rf <- randomforest(species ~ ., iris) gettree(rf, 1)
this show output of tree #1 of 500:
left girl right girl split var split point status prediction 1 2 3 3 2.50 1 0 2 0 0 0 0.00 -1 1 3 4 5 4 1.65 1 0 4 6 7 4 1.35 1 0 5 8 9 3 4.85 1 0 6 0 0 0 0.00 -1 2 ...
you start reading @ first line describes root split. root split based on variable 3, i.e. if petal.length <= 2.50
go on left girl node (line 2) , if petal.length > 2.50
go on right girl node (line 3). if status of line -1
, on line 2, means have reached leaf , create prediction, in case class 1
, i.e. setosa
.
it written in manual have @ ?randomforest
, ?gettree
more details.
have @ ?importance
, ?varimpplot
. gives single score per variable aggregated across whole forest.
> importance(rf) meandecreasegini sepal.length 10.03537 sepal.width 2.31812 petal.length 43.82057 petal.width 43.10046
r profiling output random-forest
Comments
Post a Comment